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Objective 

Show developers how to improve the performance of geometry computations by 

transposing packed 3D data on-the-fly to take advantage of 8-wide SIMD processing.  

Abstract  

This article shows how to exploit 256-bit Intel® Advanced Vector Extensions (Intel® 

AVX) to normalize an array of 3D vectors. We describe a shuffle approach to convert 

between AOS and SOA on-the-fly in order to make data ready for up to 8-wide single 

instruction multiple data (SIMD) processing. The 8x3 to 3x8 transpose can be done in 5 

shuffles, and the 3x8 to 8x3 transpose back takes 6 shuffles. Results demonstrate the 

benefit of wider SIMD on the normalization computation with 2.3 and 2.9 times speedups 

on 128-bit and 256-bit respectively. The round trip cost, 11 extra instructions, of enabling 

SOA processing is low enough to justify its usage on this small computation.  

Introduction 

Many interactive applications do a lot of geometry processing of one form or another on 

the CPU. While structure of array (SOA) memory layout is most efficient for processing, 

in some applications it may not be practical to store data this way.  Quite often there is 

performance-critical code that operates on a regular array of 3D vectors – a very common 

data structure found in 3D applications. A common example is making an array of 3D 

normal vectors to all be of unit length. In this article, we begin with this function and 

optimize the code to exploit the capabilities of the x86 processor, including new 256-bit 

instructions from the Intel® Advanced Vector Extensions (Intel® AVX), which are part 

of the new microarchitecture of the second-generation Intel® Core™ processor family, 

codenamed Sandy Bridge. 

The C code for the loop being optimized is shown below:  

  void Normalize(float V[][3],int N) 

  { 

    for(int i=0;i != N;i++) 

    { 

        float *v=V[i]; 

        float invmag = 1.0f/sqrtf(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);  

        v[0] *= invmag; 

        v[1] *= invmag; 

        v[2] *= invmag; 

    } 

  } 



In practice, such a routine may be implemented using a C++ 3D vector class with 

overloaded operators, but the underlying operations and data layout would be the same.  

Usage of single instruction multiple data (SIMD) processing with 4-wide 32-bit precision 

floating point has become widespread since the introduction of the Intel® Streaming 

SIMD Extensions 2 (SSE2) in 2001.  Because the 128-bit register size is a natural fit for 

4D data, many 3D interactive applications will use homogeneous vectors, or pad 3D 

vectors with an extra 32 bits. While an easy way to exploit SIMD processing the gains 

are rarely a 4x improvement due to other performance bottlenecks. Applying this style of 

SIMD to our normalization example would only use ¾ of a 128-bit register. While the 

multiplications can be done in parallel, summing the squares and the inverse square root 

do not benefit from SIMD. Most importantly, this programming pattern does not scale to 

wider SIMD such as 256-bit Intel Advanced Vector eXtensions (AVX) that support 

parallel operations on 8 floating point numbers.  

Another approach to exploit SIMD is to process 8 iterations of the loop at a time, i.e.,  

normalize 8 vectors at once. This requires the data to be rearranged so all the X 

components of the 8 vectors fit into one register, the Y's in the next, and Z's in another. 

Loading the registers would be easy if our data happened to be stored this way in a 

structure of arrays (SOA). However, some applications do require the data storage to be a 

packed sequence of 3D vectors – an array of structures (AOS). Therefore, to utilize 8-

wide SIMD processing, we need to transpose the data on-the-fly, do the computation, and 

transpose back. This article describes how to do the transpose using shuffles on the x86, 

followed by provides performance results, including both optimized serial and shuffle 

transpose implementations, that shows the speedup that can be obtained using Intel AVX 

for normalizing an (AOS) array of 3D vectors.  

The 128-bit and 256-bit AOS to SOA shuffle 

The most efficient way to move data from the first level cache into registers is to load 

128 bits (or more) at a time. This is a different stride than our packed array of 3D values. 

However, the pattern of 128-bit alignment repeats for every fourth vector (or 12 floats). 

Therefore, three aligned 128-bit loads pull the next four 3D vectors into three 128-bit 

registers.  

The order of the vector elements is not very useful right after the three loads. Next we 

need to get the data from four 3D vectors into a usable form by grouping the X's, Y's and 

Z's into separate registers. The following figure shows the 4x3 to 3x4 transpose using five 



Intel AVX 128-bit shuffles. 

 

With the data now in SOA form, the computation is done with the same steps as the serial 

implementation but using the Intel AVX instructions to normalize 4 vectors at a time.   

The result of the computation will be in SOA form and needs to be transposed back into 

AOS.  Our conversion operations are not symmetrical. In other words, the transpose back 

from SOA to AOS cannot be done with the same code. In fact, it takes one more shuffle 

to convert back.  The technique is illustrated in the following figure. 

  

So far we have described 4 float or 128-bit SIMD usage. We can extend this to 8x3 by 

using the full 256-bit registers and instructions provided by Intel AVX. When shuffles are 

involved, the way to think about 256-bit Intel AVX is that there are two lanes that are 

128-bit each. In other words, AVX provides two lanes of 4 wide SIMD units.  As before, 

we load the first 12 floats into three 128-bit registers which actually are the lower halves 

of three 256-bit registers. All we have to do now is load the next 12 floats (or next four 

3D vectors) into the upper halves of those same three 256-bit registers. Then the shuffle 

computation is implemented exactly the same way, but using the 256-bit versions of each 

of the instructions/intrinsics. 



 .  

The 256 bit conversion back to AOS in 6 shuffles and subsequent stores are similarly an 

extension of the 128-bit version above. With the ability to transpose data into SOA and 

back, we are now ready to apply this technique to normalizing an array of 3D vectors.  

Testing and Results 

For our testing, we used a single core from an Intel® processor-based system with the 

microarchitecture codename Sandy Bridge that supports Intel AVX. To focus on 

instruction costs, L1 caches were primed with the data for 1024 3D vectors. The RDTSC 

instruction was called before and after each loop to measure the total number of cycles to 

process the entire dataset.  In the tables below, we divide by the size of the array and 

show throughput results in CPU cycles per 3D vector processed. In addition to the 

various normalization implementations, we also measure loops with parts removed to 

gauge the cost of various steps in isolation.  

The following table shows the cost per 3D vector of the round trip from AOS to SOA and 

back to AOS for 3D data on SIMD 128-bit (4 float) and 256-bit (8 float).  

Transpose Only Round 

Trip 

Cycles Per Vector 

Processed 
Description 

shuf_trans128:  3.0  
128-bit AOS->SOA->AOS via 

shuffles  

shuf_trans256:  1.5  256-bit transpose and back  

The values in the table are cycles per 3D vector. Note that there is more than one vector 

being transposed per loop iteration.  In both cases, the loop iteration takes 12 cycles 

which is reasonable since there are 11 shuffles per loop.  The meaningful result is that the 

cost is three or fewer cycles per vector for the round trip conversion from our packed 

array of structures to a structure of arrays and back.  



For the next test, we wanted to gauge what the cost would be if there was no transpose 

required, so we made another data structure where the data was already prearranged in 

SOA format, i.e., three separate arrays for all the X's, Y's, and Z's. The following table 

shows the cost of normalizing 3D vectors already in SOA format.  

SIMD Math Only 

Tests 

Cycles Per Vector 

Normalized 
Description 

norm_soa_data4:  1.8  128-bit intrinsics norm on SOA data 

norm_soa_data8:  1.1  256-bit intrinsics norm on SOA data 

Results are presented for both 128-bit and 256-bit SIMD normalization implementations 

on preformatted SOA data. Because the cost of shuffling data is not free, it is doubtful 

that normalizing the AOS data could be as fast as these times. This is meant for reference 

and provides an indication of the absolute performance limit for just the mathematical 

computation for our loop.   

Note that normalization is using the low level of numerical accuracy.  The result of the 

approximate inverse square root assembly routine is not refined with Newton-Raphson.  

For some applications, such as generating mesh normals for lighting calculations, low 

accuracy may be considered sufficient.  The goal of these tests is to evaluate the potential 

benefit for the transpose on-the-fly technique for very small computations.   

The cost of normalizing our regular array of 3D vectors (AOS dataset) is shown in the 

following table:  

3D Vector 

Normalization 

Cycles Per Vector 

Normalized 
Description 

x87:  45.0  
serial function without any Intel® SSE 

or Intel® AVX  

arch_optim:  24.3  
serial normalization (no SIMD) with -

arch optimization  

rsqrt_ss:  8.0  
serial vector normalization using 

RSQRT assembly  

mask_trans:  9.4  
AOS->SOA->AOS uses masking for 

4x3 trans 

shuf_trans4:  3.5  
4 float (128 bit) SOA AOS conversion 

with shuffles 

shuf_trans8:  2.7  
8 float (256 bit) 8x3 transpose with 

shuffles 

The results are shown for a variety of implementations. To get a fair basis for comparison, 

we wrote, using hand-picked assembly instructions, an optimal serial implementation, 

with less accuracy, that averages 8 cycles per loop or 8 cycles per vector normalization. 



Also for interest, we compared with another 128-bit AOS->SOA->AOS programming 

pattern that uses masks and bitwise logical operations to implement the transpose. On 

current hardware, this method is slower than the serial implementation.  

Using Intel AVX's 256 bit SIMD, a regular 3D array of vectors are normalized with a 2.7 

cycle throughput. In other words, the SIMD implementation using shuffles performs 

better than the best serial implementation. Note the cost is not exactly the sum of the 

computation and the shuffle from the previous two tables.  Intel's x86 CPU has 

independent execution ports for processing shuffles, multiplies, additions, and moves. 

Overall, the shuffle-based transpose to enable an SOA implementation results in a 

respectable speedup.  

SIMD Benefit Best Serial 128 bit 256 bit 

Speedup 1 (baseline) 2.3 2.9 

 

Conclusion 

From a vanilla C/C++ implementation, there are a number of incremental steps that a 

developer can take to improve code performance, including setting compiler flags to use 

the available architecture/instructions, picking the faster instructions within the 

implementation, and exploiting SIMD. Starting from our humble non-tuned Release 

mode compilation and progressing all the way to our 256-bit Intel® AVX version, the 

performance improves by over an order of magnitude.  

Working with data structures that are already in SOA layout would certainly be the most 

efficient, but this is not always possible in many applications.  Shuffling 3D data between 

SOA and AOS on the fly is a worthwhile way to get better utilization of the Intel® CPU 

processor and potentially make 3D applications run faster. The amount of computation 

per vector in this example is quite small. When there is more work to be done in the 

innermost loop, the speedup attained by this approach will likely be even greater.  
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Appendix: Transpose Source Code 

AOS to SOA 128-bit 



C source code with 128-bit Intel® Advanced Vector Extensions (Intel® AVX) intrinsics 

for converting AOS to SOA:  

 

 float *p;  // address of first vector 

 __m128 x0y0z0x1 = _mm_load_ps(p+0); 

 __m128 y1z1x2y2 = _mm_load_ps(p+4);   

 __m128 z2x3y3z3 = _mm_load_ps(p+8); 

 __m128 x2y2x3y3 = _mm_shuffle_ps(y1z1x2y2,z2x3y3z3,_MM_SHUFFLE( 2,1,3,2));   

 __m128 y0z0y1z1 = _mm_shuffle_ps(x0y0z0x1,y1z1x2y2,_MM_SHUFFLE( 1,0,2,1));  

 __m128 x        = _mm_shuffle_ps(x0y0z0x1,x2y2x3y3,_MM_SHUFFLE( 2,0,3,0)); // x0x1x2x3 

 __m128 y        = _mm_shuffle_ps(y0z0y1z1,x2y2x3y3,_MM_SHUFFLE( 3,1,2,0)); // y0y1y2y3 

 __m128 z        = _mm_shuffle_ps(y0z0y1z1,z2x3y3z3,_MM_SHUFFLE( 3,0,3,1)); // z0z1z2z3 

 

The output is found in __m128 registers x,y and z.  

SOA to AOS 128-bit 

C source code with 128-bit Intel® Advanced Vector Extensions (Intel® AVX) intrinsics 

for converting SOA to AOS:  

  __m128 x,y,z;  // Starting SOA data 

  __m128 x0x2y0y2 = _mm_shuffle_ps(x,y, _MM_SHUFFLE(2,0,2,0));  

  __m128 y1y3z1z3 = _mm_shuffle_ps(y,z, _MM_SHUFFLE(3,1,3,1));  

  __m128 z0z2x1x3 = _mm_shuffle_ps(z,x, _MM_SHUFFLE(3,1,2,0));  

 

  __m128 rx0y0z0x1= _mm_shuffle_ps(x0x2y0y2,z0z2x1x3, _MM_SHUFFLE(2,0,2,0));   

  __m128 ry1z1x2y2= _mm_shuffle_ps(y1y3z1z3,x0x2y0y2, _MM_SHUFFLE(3,1,2,0));   

  __m128 rz2x3y3z3= _mm_shuffle_ps(z0z2x1x3,y1y3z1z3, _MM_SHUFFLE(3,1,3,1));   

 

  _mm_store_ps(p+0, rx0y0z0x1 ); 

  _mm_store_ps(p+4, ry1z1x2y2 ); 

  _mm_store_ps(p+8, rz2x3y3z3 ); 

 

Registers x,y,z containing the data for 4 vectors is shuffled and stored into packed array 

starting at pointer p.  

AOS to SOA 256-bit 

C source code with 256-bit Intel® Advanced Vector Extensions (Intel® AVX) intrinsics 

for converting AOS to SOA:  

 

  float *p;  // address of first vector 

 __m128 *m = (__m128*) p; 

 __m256 m03; 

 __m256 m14;  

 __m256 m25;  

 m03  = _mm256_castps128_ps256(m[0]); // load lower halves 

 m14  = _mm256_castps128_ps256(m[1]); 

 m25  = _mm256_castps128_ps256(m[2]); 

 m03  = _mm256_insertf128_ps(m03 ,m[3],1);  // load upper halves 

 m14  = _mm256_insertf128_ps(m14 ,m[4],1); 

 m25  = _mm256_insertf128_ps(m25 ,m[5],1); 

 

 __m256 xy = _mm256_shuffle_ps(m14, m25, _MM_SHUFFLE( 2,1,3,2)); // upper x's and y's  

 __m256 yz = _mm256_shuffle_ps(m03, m14, _MM_SHUFFLE( 1,0,2,1)); // lower y's and z's 

 __m256 x  = _mm256_shuffle_ps(m03, xy , _MM_SHUFFLE( 2,0,3,0));  

 __m256 y  = _mm256_shuffle_ps(yz , xy , _MM_SHUFFLE( 3,1,2,0));  

 __m256 z  = _mm256_shuffle_ps(yz , m25, _MM_SHUFFLE( 3,0,3,1));  



 

 

Eight 3D vectors are loaded from address p and the output is found in __m256 registers 

x,y and z. Although this may appear intimidating, it is a natural extension of the 128 bit 

version.  

SOA to AOS 256-bit 

C source code with 256-bit Intel® Advanced Vector Extensions (Intel® AVX) intrinsics 

for converting SOA to AOS:  

 

  __m256 x,y,z;  // Starting SOA data 

  float *p; // output pointer 

__m128 *m = (__m128*) p; 

 

  __m256 rxy = _mm256_shuffle_ps(x,y, _MM_SHUFFLE(2,0,2,0));  

  __m256 ryz = _mm256_shuffle_ps(y,z, _MM_SHUFFLE(3,1,3,1));  

  __m256 rzx = _mm256_shuffle_ps(z,x, _MM_SHUFFLE(3,1,2,0));  

 

  __m256 r03 = _mm256_shuffle_ps(rxy, rzx, _MM_SHUFFLE(2,0,2,0));   

  __m256 r14 = _mm256_shuffle_ps(ryz, rxy, _MM_SHUFFLE(3,1,2,0));  

  __m256 r25 = _mm256_shuffle_ps(rzx, ryz, _MM_SHUFFLE(3,1,3,1));   

 

  m[0] = _mm256_castps256_ps128( r03 ); 

  m[1] = _mm256_castps256_ps128( r14 ); 

  m[2] = _mm256_castps256_ps128( r25 ); 

  m[3] = _mm256_extractf128_ps( r03 ,1); 

  m[4] = _mm256_extractf128_ps( r14 ,1); 

  m[5] = _mm256_extractf128_ps( r25 ,1); 

 

Registers x,y,z containing the data for eight 3D vectors is shuffled and stored into packed 

array starting at pointer p.  

 


