
This 30 minute section of the Math Tutorial is about working with Rotations when developing your 3D
simulation or video game.

0

Nobody here should be intimidated by this subject matter. Even if you have math -a-phobia, your brain is
designed to do spatial computation.

After randomly wondering around the jungle all day looking for food, youôre instincts tell you the way straight
back to the cave. East two blocks, south a block, west two blocks. Obviously 1 block north gets us back.

Rotations too...

None of us would be here in this auditorium today if we didnôt all have the natural ability to recognize a wild
Tiger from any viewpoint. (BTW powerful computers with the best comp vision algs still struggle with this.)

1

Hereôs Todayôs Menu.

Lots to cover in 30 minutes. So pace may be fast for some.

This subject is worth mastering. Hopefully, weôll get everybody up to speed so you all can get the most out of
Ginoôs IK talk this afternoon.

2

First letôs get some definitions out of the wayé

For linear motion, t he distinction between position, translation, and velocity is very clear. For angular
motion , orientation typically refers to how an object is facing, rotation is a change in orientation or moving
something around an axis, and spin is the rate of change. Admittedly this distinction can get fuzzy . An
orientation is ultimately a rotation relative to some reference frame. Furthermore, orientation and rotation
are both implemented with the same structures and functions.

3

Translations are easy and obvious. Vector operations are just grade -school -arithmetic, but on groups of 2 or
3 at a time.

Rotations can be more confusing. Its not mathematicsô fault ï its just the nature of how things work. For
example, if you rotate an object 90 degrees around the X axis, then 90 degrees on Y, the object ends up in a
different orientation than had you rotated first on Y, then on X. Not surprisingly, implementing rotations will
need to correctly handle all of this weirdness.

4

Lets start in 2D. Using some High School math now é

If we have a point that starts out along the x axis a short ways, more specifically at [1,0], and then we rotate
it by an angle (theta) ccw about the origin, its x,y position will be cos,sin .

5

Similarly, if we rotate another point a short ways up the Y axis 0,1, its x,y position will end up at ïsin,cos .

6

What about an arbitrary point?

We know it will also follow a circular path around the origin.

7

An arbitrary point is a linear combination of an x and a y.

8

We already know how to rotate things along the x and y axis. The final rotated point is the combination of
the rotated axis aligned components.

9

Hereôs the equations for the new x and y positions for a point rotated around the origin.

10

Put both equations together in a box and we have a matrix that describes the rotation.

11

Lets now place some yellow graph paper on top of the first one. The origins line up, but this new grid is
rotated by theta.

The columns of our rotation matrix describe the directions of the x and y axes of the yellow grid according to
the original one. In other words, this matrix specifies the orientation of the yellow graph paper.

12

Given a point in a reference frame (such as a local coordinate system), we often want to know where that
point would be in another reference frame (perhaps world coordinates).

Weôre not actually rotating the point. This is the notion of a passive transformation. Just like how daylight
savings time is not the same thing as time travel.

The math is the same. Given a point x,y in the yellow reference frame, we multiply by the yellow frameôs
orientation matrix to determine its coordinates in the blue reference frame.

13

Lets now move into the 3D world by adding a row and a column to the matrix.

We still have a rotation on the XY plane ï or, equivalently, about the Z axis.

14

Rearranging rows and columns in the obvious way, its possible to rotate around X or Y instead.

15

Matrix multiplication works for more than just points. We can rotate entire objects ï i.e. change their
orientation.

Here we see a dice in 4 different states and the transitions that take it from state to state. Notice that
Matrices are used both to describe the rotations as well as the orientations. For orientations, the 3 columns
will indicate where sides 1,2,3 of the dice are pointing .

(the next few slides will show how we apply the rotations, and later the quaternions mentioned at the bottom will be explained)

16

And now, a brief interruption to discuss notation. You may see different conventions in practice. Opengl ,
Math textbooks, and many libraries will use column vectors, usually multiplied on the right hand side of a
matrix (but not always). In contrast, some APIs, most notably DirectX, uses row vectors with the opposite
multiplication order.

Thereôs no fundamental difference between the two. Mathematically equivalent. Had to pick one, so weôre
using the column style today.

17

18

After rotating a point v, thereôs no requirement to stop there. The result can be multiplied by another
rotation, and so on.

Oré

We can multiply the matrices first, producing a new single matrix, also a rotation matrix, that will transform
things the same way as the entire sequence.

19

You may have noticed that the order of the multiplication operands was going right to left in the previous
slide. That is because we were thinking from our point of view: x to the right, y to the top, and z coming out
of the page.

Consider the rotations from the objectôs frame of reference where the diceôs sides 1,2,3 are its x,y,z basis.
Now look at our rotation sequence to the left. The reference frames start out the same (i.e. aligned), but
after the first rotation (A) thatôs no longer the case. So while the second ñBò 90 degree rotation is on our X ,
its on the Z axis of the Dice. ...

20

When applying a rotation based on the local perspective you multiply it on the right hand side of the initial
orientation instead of on the left. In other words, the sequence is reversed.

Whether using local or global perspective to roll the dice, you end up with the same result.

21

Its up to you, the developer, to understand the context in order to determine how rotations should be
combined. For example, if you are creating an airplane simulation and you are writing code to deal with the
player yanking back on the flight stick. Then you will want to pitch the plane upward about an axis that
extends from wingtip to wingtip. Lets assume this the x axis of the plane. Obviously it doesnôt matter
where the worldôs x axis happens to be. So mathematically we want to multiply our rotate-around -X matrix
on the right hand side of our current plane orientation to get our new climbing orientation.

22

A question asking how to go from A to B could mean different things depending on the context.
If you have something with orientation A that you want to move into orientation B, then you want to undo the A and apply B. Mat hematically, this is B times
inverse of A.

Alternatively, if its seeing a vector from Aôs perspective and wondering how it looks from B, then you want to passively transform i t out of Aôs reference frame and
put it into B. So thatôs inverse of B times A.

The difficulty people sometimes have when working with rotations isnôt implementing matrix multiplication.
Those functions are already in the math library you use ï and they work. The challenge is knowing: what
to multiply, in what order, and when to invert.

23

