
This 30 minute section of the Math Tutorial is about working with Rotations when developing your 3D 
simulation or video game.  
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Nobody here should be intimidated by this subject matter.  Even if you have math -a-phobia, your brain is 
designed to do spatial computation.  

After randomly wondering around the jungle all day looking for food, youôre instincts tell you the way straight 
back to the cave.  East two blocks, south a block, west two blocks.  Obviously 1 block north gets us back.  

Rotations too...  

None of us would be here in this auditorium today if we didnôt all have the natural ability to recognize a wild 
Tiger from any viewpoint.  (BTW powerful computers with the best comp vision algs  still struggle with this.)  
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Hereôs Todayôs Menu. 

Lots to  cover in 30 minutes.  So pace may be fast for some.  

This subject is worth mastering.  Hopefully,  weôll get everybody up to speed so you all can get the most out of 
Ginoôs IK talk this afternoon. 
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First letôs get some definitions out of the wayé 

For  linear motion, t he distinction  between position, translation, and velocity is very clear.  For angular 
motion , orientation typically refers to how an object is facing, rotation is a change in orientation or moving 
something around an axis, and spin is the rate of change.  Admittedly this distinction  can  get fuzzy .  An 
orientation is ultimately a rotation relative to some reference frame.  Furthermore, orientation and rotation  
are both implemented with the same structures and functions.  
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Translations are easy and obvious.  Vector  operations are just grade -school -arithmetic, but on  groups of 2 or 
3 at a time.  

Rotations can be more confusing.  Its not mathematicsô fault ï its just the nature of how things work.  For 
example, if you rotate an object 90 degrees around the X axis, then 90 degrees on Y, the object ends  up in a 
different orientation than had you rotated first on Y, then on X.  Not surprisingly,  implementing rotations will 
need to correctly handle all of this weirdness.  
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Lets start in 2D.   Using some High School math now é 

If we have a point that starts out along the x axis a short ways, more specifically at [1,0], and then we rotate  
it by an angle (theta) ccw  about the origin, its x,y  position will be cos,sin . 
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Similarly, if we rotate another point a short ways up the Y axis 0,1, its x,y  position will end up at ïsin,cos . 
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What about an arbitrary point?   

We know it will  also follow a circular path around the origin.  
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An arbitrary point is a linear combination of an x and a  y. 
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We already know how to rotate  things along the x and y axis.  The final rotated point is the combination of 
the rotated axis aligned components.  
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Hereôs the equations for the new x and y positions for a point rotated around the origin. 
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Put both  equations together in a box and we have a matrix that describes the rotation.  
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Lets now place some yellow graph paper on top of the first  one.  The origins line up, but this new grid is 
rotated by theta.     

The columns of our rotation matrix describe the directions of the x and y axes of the yellow grid according to 
the original one.  In other words, this matrix specifies the orientation  of the yellow graph paper.  

12  



Given  a point in a reference frame (such as a local coordinate system), we often want to know where that 
point would be in another reference frame (perhaps world coordinates).  

Weôre not actually rotating the point.  This is the notion of a passive transformation.    Just like how daylight 
savings time is not the same thing as time travel.  

The math is the same.   Given a point x,y  in the yellow reference frame, we multiply by the yellow frameôs 
orientation matrix to determine its coordinates in the blue reference frame.  
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Lets now move into the 3D world by adding a row and a column to the matrix.    

We still have a rotation on the XY  plane ï or, equivalently, about the Z axis.  
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Rearranging rows and columns in the obvious way, its possible  to rotate around X  or Y instead.  
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Matrix multiplication works  for more than just points.  We can rotate entire objects ï i.e. change their 
orientation.  

Here we see a dice in 4 different states and the transitions  that take it from state to state. Notice that 
Matrices are used both  to describe the rotations as well as the orientations.  For orientations, the 3 columns 
will indicate  where sides 1,2,3 of the dice are pointing .  

( the next few slides will show how we apply the rotations, and later the quaternions  mentioned at the bottom will be explained)  
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And now,  a brief interruption to discuss notation.  You may see different conventions  in practice.  Opengl , 
Math textbooks, and many libraries will use column vectors, usually multiplied on the right hand side of a 
matrix (but not always).   In contrast, some APIs, most notably DirectX, uses row vectors with the opposite 
multiplication order.   

Thereôs no fundamental difference between the two.  Mathematically equivalent.  Had to pick one, so weôre 
using the column style today.  
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After rotating a point v,  thereôs no requirement to stop there.  The result can be multiplied by another 
rotation, and so on.  

Oré  

We can multiply the matrices first, producing a new single matrix, also  a rotation matrix,  that will transform 
things  the same way as the entire sequence.   
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You may have noticed that the order of the multiplication operands was going right to left in the previous 
slide.  That is because we were thinking from our point of view:  x to the right, y to the top, and z coming out 
of the page.   

Consider the rotations from the objectôs frame of reference where the diceôs sides 1,2,3 are its x,y,z  basis.   
Now look at our rotation sequence to the left.  The reference frames start out the same (i.e. aligned), but 
after the first rotation (A) thatôs no longer the case.  So while the second ñBò 90 degree rotation is on our X , 
its on the Z axis of the Dice.     ...  
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When applying a rotation based on the local perspective you multiply it on the right hand side of the initial 
orientation instead of on the left. In other words, the sequence is reversed.  

Whether using local or global perspective to roll the dice, you end up with the same result.  
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Its up to you, the developer, to understand the context in  order to determine how rotations should be 
combined.   For example, if you are creating an airplane simulation and you are writing code to deal with the 
player yanking back on the flight stick.  Then you will want to pitch the plane upward about an axis that 
extends from wingtip to wingtip.  Lets assume this the x axis of the plane.    Obviously it doesnôt matter 
where the worldôs x axis happens to be.   So mathematically we want to multiply our rotate-around -X matrix 
on the right hand side of our current plane orientation to get our new climbing orientation.  
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A question asking how to go from A to B could mean different things depending on the context.  
If you have something with orientation A that you want to move into orientation B, then you want to undo the A and apply B.  Mat hematically, this is B times 
inverse of A.  

Alternatively, if its seeing a vector from  Aôs perspective and wondering how it looks from B, then you want to passively transform i t out  of Aôs reference frame and 
put it into B.  So thatôs inverse of B times A. 

The difficulty people sometimes have  when working with rotations isnôt implementing matrix multiplication.  
Those functions are already in the math library you use ï and they work.  The challenge is knowing:  what 
to multiply, in what order, and when to invert.  
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